Skip to section navigation Skip to main content

Plinko

Resources for this lesson:

You will use your Algebra II Journal opens in new window on this page.

> Glossary opens in new window
> Calculator Resources opens in new window
> Teacher Resources: Instructional Notes opens in new window

It’s time to try another example.

Listed below are the ages for the vice presidents of the United States.

Vice President

Age at Inauguration

1. J. Adams

53

2. Jefferson

53

3. Burr

45

4. G. H. Clinton

65

5. Gerry

68

6. Tompkins

42

7. Calhoun

42

8. Van Buren

50

9. R. M. Johnson

56

10. Tyler

50

11. Dallas

52

12. Fillmore

49

13. King

66

14. Breckinridge

36

15. Hamlin

51

16. A. Johnson

56

17. Colfax

45

18. Wilson

61

19. Wheeler

57

20. Arthur

51

21. Hendricks

65

22. Morton

64

23. Stevenson

57

24. Hobart

52

25. T. Roosevelt

42

26. Fairbanks

52

27. Sherman

53

28. Marshall

58

29. Coolidge

48

30. Dawes

59

31. Curtis

69

32. Garner

64

33. Wallace

52

34. Truman

60

35. Barkley

71

36. Nixon

40

37. L. B. Johnson

52

38. Humphrey

53

39. Agnew

50

40. Ford

60

41. Rockefeller

66

42. Mondale

49

43. G. H. Bush

56

44. Quayle

41

45. Gore

44

46. Cheney

59

47. Biden

66

 

Algebra II Journal: Reflection 2

Respond to the following reflection questions in your Algebra II Journal opens in new window and submit to your teacher.

  • Construct a histogram for the Vice Presidents of the United States data.
  • Use what you know about mean (μ) and standard deviation (sigma)and data distributions to justify why the ages of the vice presidents form a normal distribution.
  • What percentage of the ages is within one standard deviation of the mean (−1sigmaand +1sigma)? What is this range of ages?
  • How close does the data fit the 95.44% rule, where 95.44% of the data falls within two standard deviations of the mean (μ ± 2sigma)? How close does the data fit the 99.74% rule, where 99.74% of the data falls within three standard deviations of the mean (μ ± 3sigma)?

 

 

< Previous Next >